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Abstract

In this paper, a method of modelling for transverse vibrations of a geometrically segmented slender beam, with

and without a crack normal to its axis, has been proposed using the Frobenius technique. There are two
segments; one segment is uniform in depth and the other segment has a linearly variable depth. The thickness is
uniform along the whole length. In the presence of a crack, the crack section is represented by a rotational

spring. Thereby, it is possible to solve both the forward and inverse problems. In the forward problem, the
frequencies can be determined by giving the rotational spring sti�ness as an input. In the inverse problem, the
method can be employed to detect the location and size of a crack by providing the natural frequencies as an
input. A number of numerical examples are presented to demonstrate the accuracy of the method. Wherever

possible, results have been compared with analytical solutions available in the literature. In the remaining cases,
the results are found to be in very good agreement with ®nite element solutions. In the inverse problems, the
error in prediction of crack location is less than 3% and that in size is around 25%. # 1999 Elsevier Science

Ltd. All rights reserved.

Keywords: Cantilever; Crack; Euler±Bernoulli beam; Finite element; Vibration

1. Introduction

Beams of variable depth o�er scope for a selective distribution of sti�ness and weight. Sometimes,
beams are composed of a variable and uniform depth segments; this may further help in ®tting special
functional requirements. The study of the vibration of such beams is very important, although not much
attention has been focused on theoretical analysis so far. The lack of study is all the greater in the case
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of such beams with a crack; this has motivated the present study. The absence of any solution to the re-

lated inverse problem has been an additional factor for the motivation.

Auciello and Ercolano (1997) have analysed a geometrically two-segmented beam; one segment of the

beam has a linearly varying depth and the other is of uniform depth. They have given a solution to the

simply supported beams, etc., mainly based on the Bessel function approach.

Analysis of the vibration of a beam of smoothly varying depth or cross-section has been done by var-

ious investigators. Rao (1965) has used the Galerkin method to determine the fundamental frequency of

a cantilever beam of linearly variable depth and thickness; he has compared the results with those of

Martin (1956). Conway and Dubil (1965) have applied the Bessel function approach to examine beams

of smoothly varying circular cross-section. Gaines and Volterra (1966) have given a procedure based on

the Rayleigh±Ritz method to calculate the upper and lower bounds to the three lowest natural frequen-

cies of transverse vibration of beams of variable depth and thickness. They have also considered beams

of uniformly varying circular section and presented the in¯uence of both rotary inertia and shear defor-

mation.

Carnegie and Thomas (1967) have studied the behavior of a turbine or compressor blade by treating

it as a taper beam of constant thickness. They have solved the related Euler±Bernoulli equation by the

®nite di�erence method. Wang (1967) has obtained solutions for a tapered beam of uniformly varying

depth and thickness simultaneously in terms of generalized hypergeometric functions by the method of

Frobenius. Mabie and Rogers (1968) have examined propped cantilever beams and solved the governing

equation through numerical integration. They consider beams of either linearly variable depth or thick-

ness. Naguleswaran (1994) has adapted the method of Frobenius to directly obtain solutions for wedge

and cone beams. Therefore, there are not many solutions concerning beams of segmented con®gur-

ations.

The problems of studying the vibration of beams become more involved in the presence of a crack or

a crack-like defect. When a crack develops in a component, it leads to a change in its vibration par-

ameters, e.g. sti�ness, damping (Adams et al., 1975), etc. Some of these parameters have been shown to

have potentials to serve as a basis to solve the inverse problem, i.e. to estimate the location and size of a

crack in the beam (Rizos et al., 1990; Liang et al., 1991; Cawley and Adams, 1979; Dimarogonas, 1987)

from its free vibration responses. Rizos et al. (1990) have proposed a method based on ¯exural vibration

for uniform beams by representing the crack section by a rotational spring. The usefulness of the

method for detection of both crack location and size is demonstrated for cantilever beams with normal

edge cracks. The technique only needs measurement of the amplitudes at any two locations along the

beam. Liang et al. (1991) have given a scheme which has a lot of similarity with that of Rizos et al., but

it requires the measurement of three transverse natural frequencies of the beam. The method has been

extended to stepped beams (Nandwana and Maiti, 1997a), beams on multiple supports (Nandwana and

Maiti, 1997b), cantilever beams with inclined edge cracks (Nandwana and Maiti, 1997c), etc. There is a

need to see if this approach can be adapted for a beam of segmented geometries and the inverse problem

can be addressed.

The objective of this paper is therefore to present an analytical method for the study of transverse vi-

bration of slender beam of constant thickness with and without cracks and made up of two segments,

one of which has a linearly varying depth and the other is uniform. The method is based on the

Frobenius technique. The e�ectiveness of method for both the forward and inverse problem is demon-

strated through a number of numerical examples. Both cantilever and simply supported boundary con-

ditions are considered. The beams studied are slender beams (of slenderness ratio in the range 12 to 24)

of isotropic material. For this range of slenderness ratio, the e�ects of rotational inertia and shear defor-

mation can be neglected. Consequently, the mode I SIF will have the dominant role in the prediction of

the location and size of a crack.
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2. Formulation

For a slender beam with two di�erent geometric segments (Fig. 1), the associated displacement func-
tions, w1(x1,t ) and w2(x2,t ), can be written in the form

w1�x1,t� � R�x1�eio t, 0Rx1RgL

w2�x2,t� � S�x2�eio t, 0Rx2R�1ÿ g�L,
where g is the length truncation factor and R(x1) and S(x2) are the mode shapes.

The governing equations of motion, neglecting the rotational inertia and shear deformation, can be
converted into the well-known Euler±Bernoulli equations:

EI1
d4R

dx4
1

ÿ rA1o2R � 0, 0Rx1RgL, �1�

d 2

dx2
2

"
EIx 2

d 2S

dx2
2

#
ÿ rAx 2

o 2S � 0, 0Rx2R�1ÿ g�L, �2�

where E is modulus of elasticity, r is density, I1 and A1 are moment of inertia and area at small end, Ix 2

Fig. 1. (a) Actual beam geometry; (b) crack representation by rotational spring.
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and Ax 2
are moment of inertia and area at any location of the linearly variable depth segment.

Introducing the dimensionless parameters,

x � x1

L

Z �
�
1� �1ÿ a�

a�1ÿ g�x2

�
,

where a=(h1/h2) is a height truncation factor. Ax 2
and Ix 2

can be expressed as

Ax 2
� ZA1

Ix 2
� Z3I1:

It may be noted that the dimensionless parameters introduced here are di�erent from those of
Naguleswaran (1994).

Eqs. (1) and (2) can be converted to the following convenient non-dimensional forms:

d 4R�x�
dZ4

ÿ p4R�x� � 0, 0RxRg �3�

Z2
d 4S�Z�

dZ4
� 6Z

d 3S�Z�
dZ3

� 6
d 2S�Z�

dZ2
ÿ q4aS�Z� � 0, 1RZR1

a
, �4�

where

p4 � rA1L
4o2

EI1
, qa � p

�
1ÿ g
1ÿ a

�
a:

2.1. Direct solution for uncracked beam

The solution of Eq. (3) can be expressed as

R�x� � A1 cosh px� A2 cos px� A3 sinh px� A4 sin px, �5�

where A1, A2, A3 and A4 are arbitrary constants.
Since Eq. (4) for the tapered segment is a fourth order di�erential equation, its general solution can

be written in terms of four linearly independent solutions. These can be determined through the method
of Frobenius. The trial solution can be written in the form of a power series

S�Z,C � �
X1
n�0

an�1�C �ZC�2n � a1�C �ZC � a2�C �ZC�2 � . . . , �6�

where C is an undetermined exponent. Substituting S(Z,C ) as S(Z ) in Eq. (4):
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�C� 1�C 2�Cÿ 1�a1�C �ZCÿ2 �
h
�C� 3��C� 2�2�C� 1�a2�C � ÿ q4aa1�C �

i
ZC�

X1
n�0

h
�C� 2n� 5��C� 2n� 4�2�C� 2n� 3�an�3�C � ÿ q4aan�2�C �

i
ZC�2n�2 � 0:

�7�

Since the right hand side is 0, the coe�cients of all the exponential terms must vanish. This gives

�C� 1�C 2�Cÿ 1�a1�C � � 0,

a1�C � � �C� 3��C� 2�2�C� 1�a2�C �
�
q4a �8�

�C� 2n� 5��C� 2n� 4�2�C� 2n� 3�an�3�C � ÿ q4aan�2�C � � 0 �9�

for n = 0,1,2,..., 1.
If a2(C ) is assumed to be 0, then all other constants, a1(C ), a3(C ), etc., become zero. This therefore

gives the trivial solution. For a nontrivial solution, a2(C ) is taken as 1 and the other constants, a3(C ),
a4(C ), a5(C ), etc., are obtained in terms of C through the recurrence relations. Finally, S(Z,C ) has the
form

S�Z,C � � �C� 3��C� 2�2�C� 1�ZC�q4a � ZC�2 �
X1
n�0

an�3�C �ZC�2n�4: �10�

Again, on substitution of S(Z,C ) as S(Z ) in Eq. (4),

Z2
d 4S�Z,C �

dZ4
� 6Z

d 3S�Z,C �
dZ3

� 6
d 2S�Z,C �

dZ2
ÿ q4aS�Z,C � � �C� 3��C� 2�2�C� 1�2C 2�Cÿ 1�Z

Cÿ2

q4a
: �11�

For S(Z,C ) to be a solution of Eq. (4), the left hand side of Eq. (11) ought to be zero. Therefore

�C� 3��C� 2�2�C� 1�2C 2�Cÿ 1� � 0: �12�

This gives the possible values of C: C= 0, 0, 1, ÿ3, ÿ2, ÿ1, ÿ2. For C=ÿ3, it is seen from Eqs. (8)
and (9) that an + 3(C ) becomes singular. Hence this value of C is not acceptable. Solutions S(Z,C ) corre-
sponding to C=ÿ2 and C = 0 are linearly related. The same type of situation arises for C=ÿ1 and
C=+1. So, only the roots C=ÿ1 and C=ÿ2 are free of any such problems and are acceptable. The
two independent mode shapes, which corresponds to C=ÿ1 and C=ÿ2, are given by

S�Z,ÿ 1� � Z� q4aZ
3

4:32:2
� q8aZ

5

6:52:4:4:32:2
� . . . �13�

T.D. Chaudhari, S.K. Maiti / International Journal of Solids and Structures 37 (2000) 761±779 765



S�Z,ÿ 2� � 1� q4aZ
2

3:22:1
� q8aZ

4

5:42:3:3:22:1
� . . . : �14�

These are the ®rst and second solutions of the mode shape Eq. (4).
The third and fourth solutions are determined by following the further steps of the Frobenius method.

By di�erentiating both sides of Eq. (11) with respect to C, the following equation is obtained.

Z2
d 4

dZ4

�
@S�Z,C �
@C

�
� 6Z

d 3

dZ3

�
@S�Z,C �
@C

�
� 6

d 2

dZ2

�
@S�Z,C �
@C

�
ÿ q4a

�
@S�Z,C �
@C

�
�

@

@C

"
�C� 3��C� 2�2�C� 1�2C 2�Cÿ 1�Z

Cÿ2

q4a

#
:

�15�

The right hand side vanishes when C = 0, ÿ1, ÿ2. Therefore, it is obvious that @S(Z,C)/@C|C=ÿ1 and
@S(Z,C )/@C|C=ÿ2 are also solutions of Eq. (4). Explicitly

@S�Z,C �
@C

� ��C� 3��C� 2��2C� 3� � �C� 2��C� 1��2C� 5��Z
C

q4a
� �C� 3��C� 2�2�C� 1�ZC

ln Z
q4a
� ZC�2 ln Z�

X1
n�0

an�3�C �ZC�2n�4jn�3�Z,C �,
�16�

where

jn�3�Z,C � � jn�2�Z,C � ÿ
1

C� 2n� 5
ÿ 2

C� 2n� 4
ÿ 1

C� 2n� 3

j2�Z,C � � ln Z:

In particular, for n = 0

j3�Z,C � � j2�Z,C � ÿ
1

C� 5
ÿ 2

C� 4
ÿ 1

C� 3
:

Substituting C=ÿ1 and C=ÿ2 in Eq. (16), the other two solutions, say S�(Z,ÿ1) and S�(Z,ÿ2), are
obtained. That is,

@S�Z,ÿ 1�
@C

� S��Z,ÿ 1� � �2:1�Z
ÿ1

q4a
� Z ln Z�

�
q4aZ

3

4:32:2

��
ln Zÿ 1

4
ÿ 2

3
ÿ 1

2

�
� . . . �17�

@S�Z,ÿ 2�
@C

� S��Z,ÿ 2� � ln Z�
�
q4aZ

2

3:22:1

��
ln Zÿ 1

3
ÿ 2

2
ÿ 1

1

�
� . . . : �18�

These two solutions are linearly independent and are, therefore, the required third and fourth sol-
utions. Hence, the general solution of the mode shape Eq. (4) can now be written:
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S�Z� � B1S�Z,ÿ 1� � B2S�Z,ÿ 2� � B3S
��Z,ÿ 1� � B4S

��Z,ÿ 2�: �19�
The eight arbitrary constants A1, A2, A3, A4, B1, B2, B3 and B4 involved in Eqs. (5) and (19) are

obtained from the four boundary conditions and four continuity conditions at the junction of the two
segments. The continuity conditions are in terms of displacement, slope, shear force and moments.

3. Formulation for beam with crack

For a beam with a crack, the beam can be split into three segments (Fig. 1) and the mode shape
equation for each segment can be written separately. The segments lying on either side of the crack are
considered to be connected by a rotational spring (Liang et al., 1991). The solutions for the three seg-
ments can be written as follows:

R1�x� � A11 cosh px� A12 cos px� A13 sinh px� A14 sin px

for the uniform depth segment,

S2�Z� � A21S2�Z,ÿ 1� � A22S2�Z,ÿ 2� � A23S
�
2�Z,ÿ 1� � A24S

�
2�Z,ÿ 2�

for the taper segment lying on the left of the crack and

S3�Z� � A31S3�Z,ÿ 1� � A32S3�Z,ÿ 2� � A33S
�
3�Z,ÿ 1� � A34S

�
3�Z,ÿ 2�

for the taper segment lying to the right of the crack.
The condition of continuity of displacement, moment and shear forces at the crack location (say,

Z=b�=L1/L ) and jump in the slope at the crack section are respectively given by:

S2�Z� � S3�Z� �20�

d 2S2�Z�
dZ2

� d 2S3�Z�
dZ2

, �21�

 
3

d 2S2�Z�
dZ2

� d 3S2�Z�
dZ3

!
�
 
3

d 2S3�Z�
dZ2

� d 3S3�Z�
dZ3

!
�22�

dS2�Z�
dZ
� 1

K

d 2S2�Z�
dZ2

� dS3�Z�
dZ

, �23�

where K=(KtL/EI1) is the non-dimensional sti�ness of the rotational spring. The compatibility con-
ditions of displacement, slope, moment and shear force at the junction of two geometric segments (i.e. at
x=g or Z=1) are

R1�x� � S2�Z�, �24�

dR1�x�
dx

�
�

1ÿ a
a�1ÿ g�

�
dS2�Z�

dZ
, �25�
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d 2R1�x�
dx2

�
�

1ÿ a
a�1ÿ g�

�2
d 2S2�Z�

dZ2
�26�

d 3R1�x�
dx3

�
�

1ÿ a
a�1ÿ g�

�3
 

d 3S2�Z�
dZ3

� 3
d 2S2�Z�

dZ2

!
: �27�

The boundary conditions are given by

S3�Z� � 0 and
dS3�Z�

dZ
� 0 for Z � 1

a
�i:e: at the fixed end �, �28�

d 2R�x�
dx2

� 0 and
d 3R�x�

dx3
� 0 for x � 0 �i:e: at the free end �: �29�

These 12 conditions are su�cient to solve for the 12 arbitrary constants. The equations involving
these constants can be written in the form

�H �fAg � f0g, �30�

where {A } is the vector of the 12 arbitrary constants Aij and the coe�cient matrix [H ] is of dimension
12 � 12 and is given by:

�H � �
24 �BFR� �0� �BFX�
�Mj � �M2� �M3�
�S1� �S2� �S3�

35: �31�

When the crack is located in the taper segment, [S1] and [M3] will be null matrices of size 4 � 4. The
non-zero submatrices of [H ] are of dimensions 4 � 4 and explicitly given by

�BFR� �

2664
1 ÿ1 0 0
0 0 1 ÿ1
0 0 0 0
0 0 0 0

3775,

�BFX� �

2666666664

0 0 0 0
0 0 0 0

S3

�
1

a
,ÿ 1

�
S3

�
1

a
,ÿ 2

�
S�3

�
1

a
,ÿ 1

�
S�3

�
1

a
,ÿ 2

�
DS3

�
1

a
,ÿ 1

�
DS3

�
1

a
,ÿ 2

�
DS�3

�
1

a
,ÿ 1

�
DS�3

�
1

a
,ÿ 2

�

3777777775
, �32�

�Mj � �

2664
cosh pg cos pg sinh pg sin pg
p sinh pg ÿp sin pg p cosh pg p cos pg
p2 cosh pg ÿp2 cos pg p2 sinh pg ÿp2 sin pg
p3 sinh pg p3 sin pg p3 cosh pg ÿp3 cos pg

3775, �33�
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�Mi � �

2664
Si�1,ÿ 1� Si�1,ÿ 2� S �i �1,ÿ 1� S �i �1,ÿ 2�

mDSi�1,ÿ 1� mDSi�1,ÿ 2� mDS �i �1,ÿ 1� mDS �i �1,ÿ 2�
m2D2Si�1,ÿ 1� m2D2Si�1,ÿ 2� m2D2S �i �1,ÿ 1� m2D2Si�1,ÿ 2�

m3
�
D3Si�1,ÿ 1� � 3D2Si�1,ÿ 1�

	
m3
�
D3Si�1,ÿ 2� � 3D2Si�1,ÿ 2�

	
m3
�
D3S �i �1,ÿ 1� � 3D2S �i �1,ÿ 1�	 m3

�
D3S �i �1,ÿ 2� � 3D2S �i �1,ÿ 2�	

3775 �34�

for i= 2,3, D= d/dZ and m=(1ÿa )/[a(1ÿg )],

�Si � �

26664
Si�b,ÿ 1� Si�b,ÿ 2� S �i �b,ÿ 1� S �i �b,ÿ 2�

D2Si�b,ÿ 1� D2Si�b,ÿ 2� D2S �i �b,ÿ 1� D2S �i �b,ÿ 2��
3D2Si�b,ÿ 1� �D3Si�b,ÿ 1�

	 �
3D2Si�b,ÿ 2� �D3Si�b,ÿ 2�

	 �
3D3S �i �b,ÿ 1� �D3S �i �b,ÿ 1�	 �

3D3S �i �b,ÿ 2� �D3S �i �b,ÿ 2�	�
KDSi�b,ÿ 1� � mD2Si�b,ÿ 1�

	 �
KDSi�b,ÿ 2� � mD2Si�b,ÿ 2�

	 �
KDS �i �b,ÿ 1� � mD2S �i �b,ÿ 1�	 �

KDS �i �b,ÿ 2� � mD2S �i �b,ÿ 2�	
37775 �35�

for i= 2 and 3.
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When a crack is located in the uniform depth segment of the beam, Eq. (31) has the same form,
except that [M2] is exchanged with [Mj ]g=b and [Mj ] becomes a null matrix. Also,

�S3� � �0�

�S1� � �Mj �g�b � �S2�:
The characteristics equation of vibration is determinant [H ]=0, i.e. |H|=0. The characteristic

equation can be written in the form

K � ÿjD2j
jD1j : �36�

By following similar steps, the characteristic equation for the beam when the crack is located in the
uniform depth segment can also be obtained. This equation can be rearranged to give

K � ÿq4a
jD2j
jD1j : �37�

In Eq. (36), |D1| and |D2| have the same form as |H| except for the last rows. The last row of |D1| is
given by

jDS2�b,ÿ 1� DS2�b,ÿ 2� DS�2�b,ÿ 1� DS�2�b,ÿ 2�
ÿDS3�b,ÿ 1� ÿDS3�b,ÿ 2� ÿDS�3�b,ÿ 1� ÿDS�3�b,ÿ 2�
0 0 0 0j

and the last row of |D2| is given by

jD2S2�b,ÿ 1� D2S2�b,ÿ 2� D2S�2�b,ÿ 1� D2S
�
2�b,ÿ 2� 0 0 0 0 0 0 0 0j

Similarly, |D1| and |D2| in Eq. (37) have the same form as |H| except for the last rows. The last row of
|D1| is given by

jsinh pb ÿsin pb cosh pb cos pb ÿsinh pb sin pb ÿcosh pb ÿcos pb
0 0 0 0j

and the last row of |D2| is given by

jcosh pb ÿcos pb sinh pb ÿsin pb 0 0 0 0 0 0 0 0j :

4. Numerical studies

4.1. Solution of forward problem

The method of solution has been tested considering both uncracked and cracked beams. The ®rst geo-
metric combination considered includes: Length (L )=480 mm, thickness=12 mm and depth at the ®xed
end (h2)=20 mm, depth at free end (h1)=8 mm, length of taper section=240 mm and length of uniform
section=240 mm. The height truncation factor, a, is 0.4 and length truncation factor, g, is 0.5. The case,
g=0, corresponds to a taper beam of constant thickness. The second geometric dataset are: Length
(L )=360 mm, thickness=12 mm and depth at the ®xed end (h2)=20 mm, depth at free end (h1)=6 mm,
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length of taper section=288 mm and length of uniform section=72 mm. The height truncation factor, a,
is 0.3 and length truncation factor, g, is 0.2. The material data employed are: density r=7860 kg/m3,
Poisson's ratio=0.3 and modulus of elasticity E= 210 GPa.

The solution to the characteristic equation |H|=0 gives the natural frequencies. The equation has
been solved here by the Newton±Raphson method to determine the natural frequencies. The tolerance
on the convergence is kept as 10ÿ8. It is observed that an inclusion of the ®rst 20 to 25 terms in the
series (Eqs. (13), (14), (17) and (18)) is su�cient for the convergence and good accuracy.

4.1.1. Uncracked beam
The overall beam dimensions conform to the above sizes in all cases. Some cases of (single segment)

taper beams have also been examined. For an uncracked beam, [H ] is an 8 � 8 matrix for a two segment
beam. A comparison with analytical solutions, wherever possible, and ®nite element results are presented
in Table 1 for the case of two segment cantilever beams. The ®nite element results are based on a pack-
age developed in-house (Maiti, 1996). In all cases, 8-noded subparametric elements (Bathe, 1990) are
used for the discretisation. There are 1629 nodes and 500 elements; the element size around the crack tip
is kept in the range 8 to 30% of crack length. In the computation, 9-point Gauss quadrature is
employed throughout. The agreement with the ®nite element results is very good, the maximum di�er-
ence being less than 4%. For purely taper beams, i.e. g=0, which can be treated as special cases of two
segment beams, the present results agree exactly with those obtained by Naguleswaran (1994).

Table 1

Comparison of natural frequencies of cantilever beams without crack

a g
Analytical (Hz) Finite element method (Hz)

o1 p1 o2 p2 o3 p3 o1 o2 o3

0.4 0.5 61.21 2.7246 276.01 5.7856 688.43 9.1372 61.18 275.11 686.81

0.3 0.2 147.23 3.6594 505.90 6.7834 1224.85 10.5549 147.01 503.55 1210.63

0.5 0.4 102.32 2.6256 450.88 5.5116 1189.64 8.9527 102.22 448.28 1173.42

0.4 0.0 324.39 3.1361 1442.03 6.6121 3630.19 10.4910 322.83 1415.36 3486.97

0.3 0.0 233.73 3.6886 952.01 7.4443 2324.16 11.6315 233.09 940.28 2262.14

Table 2

Comparison of frequency coe�cients p for simply supported beams without crack

a g
Frobenius Method

Reference results [Auciello and Ercolano

1997]

p1 p2 p3 p1 p2 p3

0.1 0.0 6.2366 13.4624 20.0029 6.2366 13.4623 20.0028

0.2 0.0 4.9597 10.3307 15.4081 4.9597 10.3307 15.4081

0.1 0.2 4.1676 11.7968 16.6741 4.1675 11.7968 16.6742

0.2 0.2 4.0491 9.3114 13.8224 4.0492 9.3117 13.8225

0.1 0.4 3.2940 9.4122 14.6626 3.2939 9.4123 14.6626

0.333 0.4 3.4153 7.5838 11.2721 3.4154 7.5839 11.2721
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The characteristic equation for simply supported beams can be easily obtained. For certain combi-
nations of height, truncation factor a and length truncation factor g, which gives the location of the
junction of two beam segments, the characteristic equation has been solved to facilitate a comparison
with those due to Auciello and Ercolano (1997). The comparison (Table 2) indicates an excellent agree-
ment.

4.1.2. Cracked beam
In the case of a beam with a crack (Ostachowicz and Krawczuk, 1991), the rotational spring sti�ness

is obtainable from

Kt � bh2E

72p�a=h�2f �a=h� , �38�

where

Table 3

Comparison of natural frequencies of cantilever beams with crack

a g b � K
Analytical (Hz) Finite element method (Hz)

o1
a o2

a o3
a o1 o2 o3

0.4 0.5 0.2 40.0 61.14 273.68 673.11 61.11 272.84 669.02

0.35 40.0 60.70 269.48 982.94 60.10 262.03 670.90

0.75 120.0 60.02 275.64 686.91 60.14 273.03 686.35

0.75 65.0 59.07 275.35 678.66 59.27 271.34 685.96

0.3 0.2 0.15 57.0 147.12 502.19 1203.79 146.63 498.15 1185.73

0.15 19.3 146.89 495.83 1165.45 146.41 491.53 1148.68

0.4 150.0 146.49 495.41 1212.99 145.58 494.31 1206.42

0.5 120.0 146.12 492.88 1195.71 144.80 497.91 1189.53

a o to p conversion factors: p2i � 0:1212731 oi (for a=0.4) and 0.0909548 oi (for a=0.3), i= 1, 2, 3.

Fig. 2. Typical ®nite element discretisation.
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Table 4

Comparison of actual and predicted crack location and size for cantilever beams (a=0.4 )

Actual Natural frequencies (Hz) Predicted

Location size
o1

a o2
a o3

a Location
Sti�ness K

Size

b � a (mm) b � % Error a (mm) % Error

Crack in uniform section of a beam (g=0.5)

Uncracked 61.18 275.11 686.81

0.2 3.0 61.11 272.84 669.02 0.198 ÿ0.2 40.0 2.90 ÿ3.33
0.2 4.0 61.03 270.21 650.59 0.193 ÿ0.7 18.0 3.93 ÿ1.75
0.35 4.0 60.10 262.03 670.90 0.345 ÿ0.5 18.5 3.89 ÿ2.75
0.4 3.0 60.39 268.78 685.11 0.390 ÿ1.0 40.0 2.90 ÿ3.33
0.4 4.0 59.51 262.27 684.08 0.395 ÿ0.5 18.5 3.89 ÿ2.75
Crack in taper section of a beam (g=0.5)

0.5 3.0 59.61 271.74 678.03 0.508 0.8 117.5 2.97 ÿ1.00
0.5 4.0 57.89 268.23 669.79 0.505 0.5 56.0 4.22 ÿ5.50
0.7 3.76 60.18 274.28 683.52 0.69 ÿ1.0 125.0 3.67 ÿ2.39
0.7 4.90 59.36 273.03 680.91 0.695 ÿ0.5 70.0 4.89 ÿ0.20
0.7 6.40 57.61 272.22 675.41 0.698 ÿ0.2 35.0 6.76 5.62

0.75 4.14 60.14 273.03 686.35 0.73 ÿ2.0 120.0 3.90 ÿ5.79
0.75 5.42 59.27 271.34 685.96 0.74 ÿ1.0 65.0 5.20 ÿ4.05
0.75 7.0 57.53 268.13 682.20 0.744 ÿ0.6 30.0 7.60 8.57

0.8 4.51 60.11 271.38 686.09 0.83 3.0 110.0 4.25 ÿ5.76
0.8 5.94 59.19 268.33 685.78 0.825 2.5 75.0 5.16 ÿ13.13
0.8 7.6 58.76 263.02 685.23 0.83 3.0 40.0 6.98 ÿ8.15
One segment taper beam (g=0.0)

Uncracked 322.83 1415.36 3486.97

0.167 1.0 322.82 1413.47 3474.91 0.175 0.8 300.0 1.08 8.00

0.167 2.0 322.72 1409.42 3438.85 0.177 1.0 110.0 1.78 ÿ11.00
0.167 3.08 322.61 1401.29 3369.86 0.177 1.0 42.3 2.88 ÿ6.49
0.167 3.83 322.47 1391.76 3295.07 0.177 1.0 28.7 3.47 ÿ9.39
0.167 5.0 322.08 1366.62 3155.94 0.178 1.1 14.0 4.74 ÿ5.20
0.33 1.2 322.55 1402.95 3448.26 0.34 1.0 310.0 1.14 ÿ5.00
0.33 2.0 322.15 1391.79 3432.13 0.34 1.0 115.0 1.90 ÿ5.00
0.33 3.67 320.63 1349.32 3373.32 0.327 ÿ0.3 28.3 3.85 4.90

0.33 4.67 318.99 1308.46 3321.45 0.330 0.0 16.7 4.89 4.71

0.33 6.0 315.35 1229.17 3231.24 0.333 0.3 8.80 6.35 5.83

0.5 1.4 322.02 1403.36 3454.07 0.505 0.5 270.0 1.32 ÿ5.71
0.5 2.0 321.28 1397.52 3450.19 0.505 0.5 142.5 1.83 ÿ8.50
0.5 4.26 315.93 1357.18 3434.24 0.505 0.5 28.0 4.19 ÿ1.64
0.5 5.50 310.49 1320.40 3399.57 0.505 0.5 15.3 5.54 ÿ0.72
0.5 7.0 300.14 1259.09 3358.20 0.506 0.6 7.80 7.32 4.57

0.67 1.6 321.22 1408.64 3440.24 0.676 0.6 238.0 1.51 ÿ5.62
0.67 2.0 320.40 1408.33 3431.69 0.675 0.5 154.5 1.87 ÿ6.50
0.67 4.8 309.17 1404.32 3318.43 0.675 0.5 25.0 4.75 ÿ1.04
0.67 6.34 298.37 1400.39 3218.71 0.675 0.5 13.0 6.42 1.26

0.67 8.0 280.68 1394.01 3070.23 0.675 0.3 6.80 8.38 4.75

a o to p conversion factors: p2i � 0:1212731 oi (for g=0.5) and 0.0303182 oi (for g=0.0), i= 1, 2, 3.
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f �a=h� � 0:6384ÿ 1:035�a=h� � 3:7201�a=h�2 ÿ 5:1773�a=h�3 � 7:553�a=h�4 ÿ 7:332�a=h�5

� 2:4909�a=h�6, �39�

where b and h are the beam thickness and depth, respectively. A higher order polynomial form for f(a/
h ) can be obtained using more terms of the polynomial expression for the stress intensity factor correc-
tion factor, given by Anifantis and Dimarogonas (1983). This is given below

Table 5

Comparison of actual and predicted crack location and size for cantilever beams (a=0.3)

Actual Natural frequencies (Hz) Predicted

Location size
o1

a o2
a o3

a Location
Sti�ness K

Size

b � a (mm) b � % Error a (mm) % Error

Crack in uniform section of a beam (g=0.2)

Uncracked 147.01 503.55 1210.63

0.1 1.2 146.99 502.92 1206.44 0.122 2.2 260.0 0.893 ÿ25.58
0.1 1.98 146.72 500.98 1199.02 0.11 1.0 75.0 1.65 ÿ16.66
0.1 3.0 146.68 498.97 1184.46 0.105 0.5 24.0 2.66 ÿ11.33
0.15 1.2 146.96 502.06 1201.69 0.15 0.0 163.0 1.13 ÿ5.83
0.15 1.98 146.63 498.15 1185.73 0.1502 0.02 57.0 1.87 ÿ5.55
0.15 3.0 146.41 491.53 1148.68 0.15 0.0 19.3 2.88 ÿ4.00
0.2 1.2 146.89 500.66 1199.34 0.2 0.0 161.7 1.13 ÿ5.83
0.2 1.98 146.48 493.95 1177.93 0.198 ÿ0.2 58.2 1.85 ÿ6.56
0.2 3.0 145.79 479.91 1131.78 0.2 0.0 20.3 2.83 ÿ5.66
Crack in taper section of a beam (g=0.2)

0.4 0.95 146.82 502.50 1210.26 0.4 0.0 1166.67 0.772 ÿ18.73
0.4 2.58 145.58 494.31 1206.42 0.4 0.0 150.0 2.23 ÿ13.56
0.4 3.46 144.48 487.71 1205.15 0.4 0.0 80.0 3.06 ÿ11.56
0.4 4.73 141.67 472.15 1202.15 0.4 0.0 35.0 4.50 ÿ4.86
0.5 1.12 146.73 503.01 1208.35 0.5 0.0 985.0 0.918 ÿ18.03
0.5 3.15 144.80 497.91 1189.53 0.5 0.0 120.0 2.71 ÿ13.96
0.5 4.22 143.01 494.44 1173.83 0.5 0.0 62.0 3.77 ÿ10.66
0.5 5.61 139.02 487.05 1142.73 0.5 0.0 29.0 5.38 ÿ4.09
0.6 1.29 146.61 503.67 1207.58 0.5 0.0 850.0 1.06 ÿ17.02
0.6 3.72 143.88 501.55 1181.56 0.6 0.0 100.0 3.19 ÿ14.24
0.6 4.97 141.31 501.13 1159.06 0.6 0.0 50.0 4.52 ÿ9.05
0.6 6.48 136.23 500.32 1118.43 0.602 0.2 25.0 6.24 ÿ3.70
One segment taper beam (g=0.0)

Uncracked 233.09 940.28 2262.14

0.4 3.29 231.16 911.09 2260.46 0.4 0.0 75.0 2.72 ÿ17.12
0.4 4.39 229.16 886.46 2258.95 0.4 0.0 40.0 3.71 ÿ15.48
0.4 5.80 224.95 839.25 2255.93 0.4 0.0 20.0 5.10 ÿ15.16
0.5 3.74 229.25 918.23 2236.18 0.5 0.0 63.0 3.15 ÿ14.77
0.5 4.99 225.75 899.65 2215.66 0.5 0.0 31.5 4.42 ÿ11.42
0.5 6.50 218.78 866.37 2180.29 0.5 0.0 15.5 6.07 ÿ6.61
0.6 4.19 226.99 932.31 2192.04 0.61 1.0 56.0 3.51 ÿ16.22
0.6 5.59 221.58 925.49 2137.86 0.61 1.0 28.0 4.93 ÿ11.00
0.6 7.20 211.78 913.60 2053.12 0.61 1.0 14.2 6.68 ÿ7.22

a o to p conversion factors: p2i � 0:0909548 oi (for g=0.2) and 0.0582111 oi (for g=0.0) i= 1, 2, 3.
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Fig. 3. Plots of sti�ness vs. crack location for a=0.4 and g=0.5.
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Fig. 4. Plots of sti�ness vs. crack location for a=0.3 and g=0.2.

T.D. Chaudhari, S.K. Maiti / International Journal of Solids and Structures 37 (2000) 761±779776



f �a=h� � 0:6384ÿ 1:035�a=h� � 3:7201�a=h�2 ÿ 5:1773�a=h�3 � 7:553�a=h�4 ÿ 7:332�a=h�5

� 6:799�a=h�6 ÿ 6:9956�a=h�7 � 20:094�a=h�8 ÿ 22:1145�a=h�9 � 6:93�a=h�10

� 16:115�a=h�12: �40�

On substitution of this K, the characteristic equation |H|=0 is obtained. |H| is a 12 � 12 determinant
for a two geometrically segmented beam. The natural frequencies have again been obtained by the
Newton±Raphson method. The analytical results are compared in Table 3 with our ®nite element data.
The di�erence is less than 3%.

4.2. Solution of inverse problem Ð crack detection

Eqs. (36) and (37) can serve as a basis to solve the inverse problems. It is just necessary to measure or
compute the ®rst three transverse natural frequencies of the beam with a crack and the corresponding
beam without the crack. Using Eq. (36) or Eq. (37) as appropriate for each mode, a variation of K with
crack location b is obtained. Since physically there is only one crack, the position where the three curves
intersect gives the crack location and the rotational spring sti�ness which simulates the crack. In order
to get a common intersection point of the three K vs. b curves, it has been shown (Nandwana and
Maiti, 1997c) that the modulus of elasticity, E, which serves as an input to Eq. (36) or Eq. (37) for each
mode, must be calculated using the zero setting procedure. This makes the computation/measurement of
the uncracked beam's natural frequencies compulsory. The crack size is then obtained using the relation-
ship between sti�ness K and crack size a, e.g. Eqs. (38)±(40).

The method of solutions has been tested considering 3 to 4 crack sizes and several crack locations.
The natural frequencies of the cracked as well as the virgin beams are computed using the ®nite element
program. For discretisation, mostly eight-noded quadrilateral elements are employed (Fig. 2). For smal-
ler crack sizes (10±20% depth), discretisation with about 1811 nodes and 560 elements has been used.
The natural frequencies so obtained are given in Tables 4 and 5. The variations of rotational spring sti�-
ness K with crack location b are shown for a few cases in Figs. 3 and 4. It must be emphasized that
twenty-®ve terms in the expansion Eq. (6) are considered in all case studies for evaluating |D1| and |D2|.
Quadruple precision computation has been found to be very useful and is uniformly employed. It is rel-
evant to note here in passing that, during computation on a PC using a FORTRAN77 compiler, by
invoking the `-r16' ¯ag, the quadruple precision can be obtained. The intersection of three curves indi-
cates the possible crack position. Whenever the three curves do not intersect at a single point, the centre
of gravity of the three pairs of intersection has been taken as the crack location (Nandwana and Maiti,
1997c). From the comparison of results, it is found that the error in the location prediction is never
more than 2.5%.

Table 6

Equivalent length of beams for crack size computation

Actual

Total beam length (mm) Uniform section length (mm) Taper section length (mm) Equivalent length (mm)
fs

a g

0.4 0.5 480.0 240.0 240.0 807.88 1.6831

0.4 0.0 240.0 0.0 240.0 296.88 1.2370

0.3 0.2 360.0 72.0 288.0 542.88 1.5080

0.3 0.0 288.0 0.0 288.0 378.23 1.3133

T.D. Chaudhari, S.K. Maiti / International Journal of Solids and Structures 37 (2000) 761±779 777



It is relevant to note here that the change in value due to the use of quarter point singularity elements
instead of 8-noded subparametric elements (of the size considered here) around the crack tip is less than
0.9% in the ®rst natural frequency and less than 0.5% in the second natural frequency, and it is negli-
gible in the case of the third natural frequency. This e�ect reduces further as the size of the 8 noded sub-
parametric elements is decreased. Similar observations have been reported by Nandwana (1998).

Since Eq. (38) is mainly valid for a uniform beam, it cannot be directly applied to geometrically seg-
mented beams. It requires some modi®cations, particularly when the crack is in the taper segment. An
idea of an equivalent beam is found to be very useful for the crack size computation. It is assumed that
the given beam is equivalent to a uniform beam of depth h2 and length Leq. This length Leq is computed
by equating the free end de¯ection of the given beam with that of the equivalent uniform beam. The
same load is applied at the free end to calculate the displacement in both the cases. Table 6 gives equiv-
alent lengths (Leq) for a number of cases. After obtaining the crack size a from Eq. (34) using all physi-
cal dimensions, it is multiplied by the factor ( fs) where

fs � Equivalent length

Actual beam length
:

For the four cases considered, values of fs are given in Table 6. The crack sizes obtained by this
method are shown in Tables 4 and 5. The maximum error in predicting crack size is around 18% for
crack sizes greater than 30% depth. In the range of crack sizes of 10±20% of section depth, the maxi-
mum error is 25%. The errors without the proposed correction are much higher, as high as 42%. No
theoretical justi®cation can be o�ered at this stage for the improvement due to the correction.

5. Conclusions

A method for modelling transverse vibration of geometrically segmented slender beams has been pro-
posed using the Frobenius method of solving Euler±Bernoulli type di�erential equations. The case stu-
dies involving beams up to two segments have clearly demonstrated the accuracy of the modelling and
the usefulness of the method for both the forward and inverse problems. Crack sizes 10±50% of section
depth have been examined. The accuracy in the case of the forward problem is excellent. The method
can be easily adapted for a number of segments more than two. This will simply increase the size of the
characteristic matrix [H ]. While locating a crack, the method does not involve any iteration and the ac-
curacy for the detection is very encouraging. The crack size can be obtained with errors around 25%
using the concept of an equivalent beam length, which is needed to handle a crack in the taper segment
of the beam. The equivalent beam length is obtained by equating the free end de¯ection of the given
beam with the free end de¯ection of a uniform beam of depth equal to the depth at the big end. The
same load is considered to be applied at the free end in both cases.
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